3.13.21 \(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx\) [1221]

3.13.21.1 Optimal result
3.13.21.2 Mathematica [C] (warning: unable to verify)
3.13.21.3 Rubi [A] (verified)
3.13.21.4 Maple [B] (verified)
3.13.21.5 Fricas [C] (verification not implemented)
3.13.21.6 Sympy [F]
3.13.21.7 Maxima [F]
3.13.21.8 Giac [F]
3.13.21.9 Mupad [F(-1)]

3.13.21.1 Optimal result

Integrand size = 43, antiderivative size = 122 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=-\frac {(A-B+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(A+B-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}+\frac {(A-B+3 C) \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \]

output
-(A-B+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1 
/2*d*x+1/2*c),2^(1/2))/a/d+(A+B-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d* 
x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+(A-B+3*C)*sin(d*x+c)/a/ 
d/cos(d*x+c)^(1/2)-(A-B+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2)
 
3.13.21.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 12.63 (sec) , antiderivative size = 1648, normalized size of antiderivative = 13.51 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx =\text {Too large to display} \]

input
Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + 
 a*Sec[c + d*x])),x]
 
output
(Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d 
*x]^2)*((2*(2*C + A*Cos[c] - B*Cos[c] + C*Cos[c])*Csc[c/2]*Sec[c/2]*Sec[c] 
)/d + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] + C* 
Sin[(d*x)/2]))/d + (8*C*Sec[c]*Sec[c + d*x]*Sin[d*x])/d))/((A + 2*C + 2*B* 
Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])) - (2*A*Cos[c/2 + 
(d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[ 
d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)* 
Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[ 
1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan 
[Cot[c]]]])/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + 
Cot[c]^2]*(a + a*Sec[c + d*x])) - (2*B*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*C 
sc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]* 
Sec[c/2]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]] 
*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[ 
d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(A + 2*C + 
 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + 
d*x])) + (2*C*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*HypergeometricPFQ 
[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + B*Sec[c + d 
*x] + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTa 
n[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])...
 
3.13.21.3 Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.98, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.279, Rules used = {3042, 4600, 3042, 3520, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a \sec (c+d x)+a)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sec (c+d x)+C \sec (c+d x)^2}{\sqrt {\cos (c+d x)} (a \sec (c+d x)+a)}dx\)

\(\Big \downarrow \) 4600

\(\displaystyle \int \frac {A \cos ^2(c+d x)+B \cos (c+d x)+C}{\cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A \sin \left (c+d x+\frac {\pi }{2}\right )^2+B \sin \left (c+d x+\frac {\pi }{2}\right )+C}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 3520

\(\displaystyle \frac {\int \frac {a (A-B+3 C)+a (A+B-C) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x)}dx}{a^2}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (A-B+3 C)+a (A+B-C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (A-B+3 C)+a (A+B-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {a (A-B+3 C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx+a (A+B-C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (A-B+3 C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+a (A+B-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {a (A+B-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a (A-B+3 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (A+B-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a (A-B+3 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {a (A+B-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a (A-B+3 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 a (A+B-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+a (A-B+3 C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )}{2 a^2}-\frac {(A-B+C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}\)

input
Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Sec 
[c + d*x])),x]
 
output
-(((A - B + C)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x]))) 
+ ((2*a*(A + B - C)*EllipticF[(c + d*x)/2, 2])/d + a*(A - B + 3*C)*((-2*El 
lipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])))/(2* 
a^2)
 

3.13.21.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3520
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a + b* 
Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x 
] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c 
+ d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(b*c*m + a 
*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c 
*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c 
^2 - d^2, 0] && LtQ[m, -2^(-1)]
 

rule 4600
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x 
_)])^(m_.)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.) 
*(x_)]^2), x_Symbol] :> Simp[d^(m + 2)   Int[(b + a*Cos[e + f*x])^m*(d*Cos[ 
e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]
 
3.13.21.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(352\) vs. \(2(170)=340\).

Time = 2.26 (sec) , antiderivative size = 353, normalized size of antiderivative = 2.89

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 C \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (A -B +3 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (A -B +5 C \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{a \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(353\)

input
int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c)),x,me 
thod=_RETURNVERBOSE)
 
output
-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a*(-cos(1/2*d*x 
+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d* 
x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*EllipticF(cos(1/2*d*x+ 
1/2*c),2^(1/2))+A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+B*EllipticF(cos(1/ 
2*d*x+1/2*c),2^(1/2))-B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-C*EllipticF( 
cos(1/2*d*x+1/2*c),2^(1/2))+3*C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-2*( 
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(A-B+3*C)*sin(1/2*d*x+ 
1/2*c)^4+(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(A-B+5*C)*si 
n(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)^3/(2*sin(1/2*d*x+1/2*c)^2-1)/cos(1/ 
2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.13.21.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 315, normalized size of antiderivative = 2.58 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {2 \, {\left ({\left (A - B + 3 \, C\right )} \cos \left (d x + c\right ) + 2 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (\sqrt {2} {\left (-i \, A - i \, B + i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-i \, A - i \, B + i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (i \, A + i \, B - i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (i \, A + i \, B - i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (-i \, A + i \, B - 3 i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-i \, A + i \, B - 3 i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + {\left (\sqrt {2} {\left (i \, A - i \, B + 3 i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (i \, A - i \, B + 3 i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{2 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c) 
),x, algorithm="fricas")
 
output
1/2*(2*((A - B + 3*C)*cos(d*x + c) + 2*C)*sqrt(cos(d*x + c))*sin(d*x + c) 
+ (sqrt(2)*(-I*A - I*B + I*C)*cos(d*x + c)^2 + sqrt(2)*(-I*A - I*B + I*C)* 
cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 
(sqrt(2)*(I*A + I*B - I*C)*cos(d*x + c)^2 + sqrt(2)*(I*A + I*B - I*C)*cos( 
d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + (sqr 
t(2)*(-I*A + I*B - 3*I*C)*cos(d*x + c)^2 + sqrt(2)*(-I*A + I*B - 3*I*C)*co 
s(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) 
 + I*sin(d*x + c))) + (sqrt(2)*(I*A - I*B + 3*I*C)*cos(d*x + c)^2 + sqrt(2 
)*(I*A - I*B + 3*I*C)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInv 
erse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + c)^2 + a*d*cos 
(d*x + c))
 
3.13.21.6 Sympy [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=\frac {\int \frac {A}{\sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {B \sec {\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx + \int \frac {C \sec ^{2}{\left (c + d x \right )}}{\sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )} + \sqrt {\cos {\left (c + d x \right )}}}\, dx}{a} \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+a*sec(d*x+ 
c)),x)
 
output
(Integral(A/(sqrt(cos(c + d*x))*sec(c + d*x) + sqrt(cos(c + d*x))), x) + I 
ntegral(B*sec(c + d*x)/(sqrt(cos(c + d*x))*sec(c + d*x) + sqrt(cos(c + d*x 
))), x) + Integral(C*sec(c + d*x)**2/(sqrt(cos(c + d*x))*sec(c + d*x) + sq 
rt(cos(c + d*x))), x))/a
 
3.13.21.7 Maxima [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c) 
),x, algorithm="maxima")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)*sq 
rt(cos(d*x + c))), x)
 
3.13.21.8 Giac [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c) 
),x, algorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)*sq 
rt(cos(d*x + c))), x)
 
3.13.21.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \sec (c+d x))} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {\cos \left (c+d\,x\right )}\,\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )} \,d x \]

input
int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos 
(c + d*x))),x)
 
output
int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a/cos 
(c + d*x))), x)